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7.3 Application: The Pigeonhole Principle
The shrewd guess, the fertile hypothesis, the courageous leap to a tentative
conclusion-these are the most valuable coin of the thinker at work.

Jerome S. Bruner, 1960

The pigeonhole principle states that if n pigeons fly into m pigeonholes and n > m, then at
least one hole must contain two or more pigeons. This principle is illustrated in Figure 7.3.1
for n = 5 and m = 4. Illustration (a) shows the pigeons perched next to their holes, and
(b) shows the correspondence from pigeons to pigeonholes. The pigeonhole principle
is sometimes called the Dirichlet box principle because it was first stated formally by
J. P. G. L. Dirichlet (1805-1859).

Pigeons Pigeonholes

(a) (b)
Figure 7.3.1

Illustration (b) suggests the following mathematical way to phrase the principle.

Pigeonhole Principle

A function from one finite set to a smaller finite set cannot be one-to-one: There must
be a least two elements in the domain that have the same image in the co-domain.

Thus an arrow diagram for a function from a finite set to a smaller finite set must have
at least two arrows from the domain that point to the same element of the co-domain. In
Figure 7.3.1(b), arrows from pigeons 1 and 4 both point to pigeonhole 3.

Since the truth of the pigeonhole principle is easy to accept on an intuitive basis,
we move immediately to applications, leaving a formal proof to the end of the section.
Applications of the pigeonhole principle range from the totally obvious to the extremely
subtle. A representative sample is given in the examples and exercises that follow.

Example 7.3.1 Applying the Pigeonhole Principle

a. In a group of six people, must there be at least two who were born in the same month?
In a group of thirteen people, must there be at least two who were born in the same
month? Why?

b. Among the residents of New York City, must there be at least two people with the same
number of hairs on their heads? Why?
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several types of problems  
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Applying the Pigeonhole Principle

In a group of six people, must there be at least two who were 
born in the same month? If the the group is thirteen?

7.3 Application: The Pigeonhole Principle 421

Solution
a. A group of six people need not contain two who were born in the same month. For

instance, the six people could have birthdays in each of the six months January through
June.

A group of thirteen people, however, must contain at least two who were born in
the same month, for there are only twelve months in a year and 13 > 12. To get at the
essence of this reasoning, think of the thirteen people as the pigeons and the twelve
months of the year as the pigeonholes. Denote the thirteen people by the symbols
Xi, X2, . . ., X13 and define a function B from the set of people to the set of twelve
months as shown in the following arrow diagram.

13 people (pigeons)

B

B(xi) = birth month of xi

1 months (pigeonholes)

* Feb

Xe

The pigeonhole principle says that no matter what the particular assignment of months
to people, there must be at least two arrows pointing to the same month. Thus at least
two people must have been born in the same month.

b. The answer is yes. In this example the pigeons are the people of New York City and
the pigeonholes are all possible numbers of hairs on any individual's head. Call the
population of New York City P. It is known that P is at least 5,000,000. Also the
maximum number of hairs on any person's head is known to be no more than 300,000.
Define a function H from the set of people in New York City {Xt, x2, .... , xp) to the
set 10, 1, 2, 3, ... , 300 0001, as shown below.

People in New York City
(pigeons)

Possible number of hairs on
a person's head (pigeonholes)

H

H(x,) = the number of
hairs on xi's head

Since the number of people in New York City is larger than the number of possible
hairs on their heads, the function H is not one-to-one; at least two arrows point to the
same number. But that means that at least two people have the same number of hairs
on their heads. U
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Applying the Pigeonhole Principle

Among the residents of New York City, must there be at 
least two people with the same number of hairs on their 
heads? 

Given that (5M in New York,   3M hairs in a head)

7.3 Application: The Pigeonhole Principle 421
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Finding the Number to Pick to Ensure a Result
A drawer contains ten black and ten white socks. You reach in and 
pull some out without looking at them. What is the least number 
of socks you must pull out to be sure to get a matched pair? 
Explain how the answer follows from the pigeonhole principle

422 Chapter 7 Functions

Example 7.3.2 Finding the Number to Pick to Ensure a Result
A drawer contains ten black and ten white socks. You reach in and pull some out without
looking at them. What is the least number of socks you must pull out to be sure to get a
matched pair? Explain how the answer follows from the pigeonhole principle.

Solution If you pick just two socks, they may have different colors. But when you pick a
third sock, it must be the same color as one of the socks already chosen. Hence the answer
is three.

This answer could be phrased more formally as follows: Let the socks pulled out be
denoted si, S2, S3 . s, and consider the function C that sends each sock to its color, as
shown below.

Socks pulled out (pigeons) Colors (pigeonholes)

C

C(si) = color of Si w

* black

If n = 2, C could be a one-to-one correspondence (if the two socks pulled out were of
different colors). But if n > 2, then the number of elements in the domain of C is larger
than the number of elements in the co-domain of C. Thus by the pigeonhole principle, C
is not one-to-one: C(si) = C(sj) for some se : sj. This means that if at least three socks
are pulled out, then at least two of them have the same color. U

Example 7.3.3 Selecting a Pair of Integers with a Certain Sum
Let A = {1, 2,3,4,5,6,7, 8}.

a. If five integers are selected from A, must at least one pair of the integers have a sum
of 9?

b. If four integers are selected from A, must at least one pair of the integers have a sum
of 9?

Solution

a. Yes. Partition the set A into the following four disjoint subsets:

{1, 8}, {2, 7}, {3, 61, and {4, 5}

Observe that each of the integers in A occurs in exactly one of the four subsets and that
the sum of the integers in each subset is 9. Thus if five integers from A are chosen,
then by the pigeonhole principle, two must be from the same subset. It follows that the
sum of these two integers is 9.

To see precisely how the pigeonhole principle applies, let the pigeons be the five
selected integers (call them al, a2, a3 , a4 , and a5) and let the pigeonholes be the subsets



11/25/18

4

7,

Generalized Pigeonhole Principle

if n pigeons fly into m pigeonholes and, for some positive 
integer k, n > km, then at least one pigeonhole contains k+1 
or more pigeons. 

For example: Let m = 4, n = 9, and k = 2. 

7.3 Application: The Pigeonhole Principle 425

Let ro = a and let ri, r2 , r3 , . . . be the successive remainders obtained in the long division
of a by b. By the quotient-remainder theorem, each remainder must be between 0 and
b - 1. (In this example, a is 3 and b is 14, and so the remainders are from 0 to 13.) If
some remainder ri = 0, then the division terminates and a/b has a terminating decimal
expansion. If no ri = 0, then the division process and hence the sequence of remainders
continues forever. By the pigeonhole principle, since there are more remainders than
values that the remainders can take, some remainder value must repeat: rj = rk, for some
indices j and k with j < k. This is illustrated below for a = 3 and b = 14.

Sequence of remainders Values of remainders when b = 14

If follows that the decimal digits obtained from the divisions between rj and rk-1 repeat
forever. In the case of 3/14, the repetition begins with r 7 = 2 = rl and the decimal
expansion repeats the quotients obtained from the divisions from r1 through r6 forever:
3/14 = 0.2142857. M

Note that since the decimal expansion of any rational number either terminates or
repeats, if a number has a decimal expansion that neither terminates nor repeats, then
it cannot be rational. Thus, for example, the following number cannot be rational:
0.01011011101111011111 ... (where each string of l's is one longer than the previous
string).

Generalized Pigeonhole Principle
A generalization of the pigeonhole principle states that if n pigeons fly into m pigeonholes
and, for some positive integer k, n > km, then at least one pigeonhole contains k + 1
or more pigeons. This is illustrated in Figure 7.3.2 for m = 4, n = 9, and k = 2. Since
9 > 2 * 4, at least one pigeonhole contains three (2 + 1) or more pigeons. (In this example,
it is pigeonhole 3 that contains three pigeons.)

Pigeons Pigeonholes

(a) (b)

Figure 7.3.2
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Generalized Pigeonhole Principle

if n pigeons fly into m pigeonholes and, for some positive 
integer k, n > k.m, then at least one pigeonhole contains k+1 
or more pigeons. 

426 Chapter 7 Functions

Generalized Pigeonhole Principle
For any function f from a finite set X to a finite set Y and for any positive integer
k, if N(X) > k. N(Y), then there is some y E Y such that y is the image of at least
k + I distinct elements of X.

Example 7.3.5 Applying the Generalized Pigeonhole Principle
Show how the generalized pigeonhole principle implies that in a group of 85 people, at
least 4 must have the same last initial.

Solution In this example the pigeons are the 85 people and the pigeonholes are the 26
possible last initials of their names. Note that

85 > 3 - 26 = 78.

Consider the function I from people to initials defined by the following arrow diagram.

85 people (pigeons) 26 initials (pigeonholes)

A<
*B

I(xi) = the initial of
x,'s last name

Since 85 > 3 * 26, the generalized pigeonhole states that some initial must be the image
of at least four (3 + 1) people. Thus at least four people have the same last initial. U

Consider the following contrapositive form of the generalized pigeonhole principle.

You may find it natural to use the contrapositive form of the generalized pigeonhole
principle in certain situations. For instance, the result of Example 7.3.5 can be explained
as follows:

Suppose no 4 people out of the 85 had the same last initial. Then at most 3 would share
any particular one. By the generalized pigeonhole principle (contrapositive form), this
would imply that the total number of people is at most 3 . 26 = 78. But this contradicts
the fact that there are 85 people in all. Hence at least 4 people share a last initial.

Generalized Pigenohole Principle (Contrapositive Form)
For any function f from a finite set X to a finite set Y and for any positive integer
k, if for each y E Y, f -'(y) has at most k elements, then X has at most k * N(Y)
elements.
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Applying the Generalized Pigeonhole Principle
Show how the generalized pigeonhole principle implies 
that in a group of 85 people, at least 4 must have the same 
last initial.
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Let ro = a and let ri, r2, r3, ...be the successive remainders obtained in the long division
of a by b. By the quotient-remainder theorem, each remainder must be between 0 and
b -1. (In this example, a is 3 and b is 14, and so the remainders are from 0 to 13.) If
some remainder ri = 0, then the division terminates and a/b has a terminating decimal
expansion. If no ri = 0, then the division process and hence the sequence of remainders
continues forever. By the pigeonhole principle, since there are more remainders than
values that the remainders can take, some remainder value must repeat: rj = rk, for some
indices j and k with j < k. This is illustrated below for a = 3 and b = 14.

Sequence of remainders Values of remainders when b = 14

If follows that the decimal digits obtained from the divisions between rj and rk-1 repeat
forever. In the case of 3/14, the repetition begins with r7 = 2 = rl and the decimal
expansion repeats the quotients obtained from the divisions from r1 through r6 forever:
3/14 = 0.2142857. M

Note that since the decimal expansion of any rational number either terminates or
repeats, if a number has a decimal expansion that neither terminates nor repeats, then
it cannot be rational. Thus, for example, the following number cannot be rational:
0.01011011101111011111 ... (where each string of l's is one longer than the previous
string).

Generalized Pigeonhole Principle
A generalization of the pigeonhole principle states that if n pigeons fly into m pigeonholes
and, for some positive integer k, n > km, then at least one pigeonhole contains k + 1
or more pigeons. This is illustrated in Figure 7.3.2 for m = 4, n = 9, and k = 2. Since
9 > 2 * 4, at least one pigeonhole contains three (2 + 1) or more pigeons. (In this example,
it is pigeonhole 3 that contains three pigeons.)

Pigeons Pigeonholes

(a)(b)

Figure 7.3.2
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f(x)

f-1(y)

X Y

y1

Y2

.
ym

if we have m pigeonholes and n pigeons; for some positive integer, if 
each pigeonhole has at most k pigeons, then then are at most k. n 
pigeons. 
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Applying the Generalized Pigeonhole Principle

Suppose no 4 people out of the 85 had the same last 
initial. Then at most 3 would share any particular one? 

426 Chapter 7 Functions

Generalized Pigeonhole Principle
For any function f from a finite set X to a finite set Y and for any positive integer
k, if N(X) > k. N(Y), then there is some y E Y such that y is the image of at least
k + I distinct elements of X.

Example 7.3.5 Applying the Generalized Pigeonhole Principle
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85 > 3 - 26 = 78.
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Since 85 > 3 * 26, the generalized pigeonhole states that some initial must be the image
of at least four (3 + 1) people. Thus at least four people have the same last initial. U

Consider the following contrapositive form of the generalized pigeonhole principle.

You may find it natural to use the contrapositive form of the generalized pigeonhole
principle in certain situations. For instance, the result of Example 7.3.5 can be explained
as follows:

Suppose no 4 people out of the 85 had the same last initial. Then at most 3 would share
any particular one. By the generalized pigeonhole principle (contrapositive form), this
would imply that the total number of people is at most 3 . 26 = 78. But this contradicts
the fact that there are 85 people in all. Hence at least 4 people share a last initial.

Generalized Pigenohole Principle (Contrapositive Form)
For any function f from a finite set X to a finite set Y and for any positive integer
k, if for each y E Y, f -'(y) has at most k elements, then X has at most k * N(Y)
elements.

Total number of people is at most 3 . 26 = 78. But this contradicts 
the fact that there are 85 people in all. Hence at least 4 people 
share a last ini@al. 
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Using the Contrapositive Form of the Generalized 
Pigeonhole Principle

There are 42 students who are to share 12 computers. Each students 
uses exactly 1 computer, and no computer is used by more than 6 
students. Show that at least 5 computers are used by 3 or more 
students.

k: number of computers used by 3 or more students.
èWe must show that k ≥ 5

x1

x2

.

.
x42
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If follows that the decimal digits obtained from the divisions between rj and rk-1 repeat
forever. In the case of 3/14, the repetition begins with r 7 = 2 = rl and the decimal
expansion repeats the quotients obtained from the divisions from r1 through r6 forever:
3/14 = 0.2142857. M

Note that since the decimal expansion of any rational number either terminates or
repeats, if a number has a decimal expansion that neither terminates nor repeats, then
it cannot be rational. Thus, for example, the following number cannot be rational:
0.01011011101111011111 ... (where each string of l's is one longer than the previous
string).

Generalized Pigeonhole Principle
A generalization of the pigeonhole principle states that if n pigeons fly into m pigeonholes
and, for some positive integer k, n > km, then at least one pigeonhole contains k + 1
or more pigeons. This is illustrated in Figure 7.3.2 for m = 4, n = 9, and k = 2. Since
9 > 2 * 4, at least one pigeonhole contains three (2 + 1) or more pigeons. (In this example,
it is pigeonhole 3 that contains three pigeons.)

Pigeons Pigeonholes

(a) (b)

Figure 7.3.2

f(x)

Students Computers

y1

y2 

y12
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Using the Contraposi1ve Form of the Generalized 
Pigeonhole Principle

There are 42 students who are to share 12 computers. Each students 
uses exactly 1 computer, and no computer is used by more than 6 
students. Show that at least 5 computers are used by 3 or more 
students.

k: number of computers used by 3 or more students.
èWe must show that k ≥ 5

6k: # of students using computers with 3 or more
12-k: # of computers used by at most 2 students
2(12-k) = 24-2k: # of students on computers used by 2 st. at most.
(6k) + (24-2k) = 4k + 24: max # of students 
42: all students
4k + 24 ≥ 42
So k ≥ 5


